Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.195
Filtrar
1.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
2.
Sci Adv ; 10(10): eadk6084, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457498

RESUMO

The emerging therapeutic strategies for osteoarthritis (OA) are shifting toward comprehensive approaches that target periarticular tissues, involving both cartilage and subchondral bone. This shift drives the development of single-component therapeutics capable of acting on multiple tissues and cells. Magnesium, an element essential for maintaining skeletal health, shows promise in treating OA. However, the precise effects of magnesium on cartilage and subchondral bone are not yet clear. Here, we investigated the therapeutic effect of Mg2+ on OA, unveiling its protective effects on both cartilage and bone at the cellular and animal levels. The beneficial effect on the cartilage-bone interaction is primarily mediated by the PI3K/AKT pathway. In addition, we developed poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with nano-magnesium oxide modified with stearic acid (SA), MgO&SA@PLGA, for intra-articular injection. These microspheres demonstrated remarkable efficacy in alleviating OA in rat models, highlighting their translational potential in clinical applications.


Assuntos
Cartilagem Articular , Nanopartículas , Osteoartrite , Ratos , Animais , Óxido de Magnésio/farmacologia , Magnésio/farmacologia , Fosfatidilinositol 3-Quinases , Osteoartrite/tratamento farmacológico
3.
Acta Biomater ; 178: 320-329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479677

RESUMO

Stress-induced corrosion impairs the mechanical integrity of magnesium (Mg) and its alloys as potential orthopedic implants. Although there has been extensive work reporting the effects of stress on Mg corrosion in vitro, the geometric design principles of the Mg-based orthopedic devices still remain largely unknown. In this work, a numerical simulation model mimicking fractured bone fixation and surgical animal models were applied to investigate the effects of the geometric design of Mg screws on the stress distribution and the stress-induced degradation behavior. Finite element (FE) analysis was used for calculation of stress concentrations around the Mg screws, with different thread type, thread pitch, and thread width. Afterward, the Mg screws of the pre-optimization and post-optimization groups exhibiting the highest and lowest stress concentrations, respectively, were implanted in the fractured distal femora and back subcutaneous tissue of rabbits. Encouragingly, there was a significant difference between the pre-optimization and the post-optimization groups in the degradation rate of the stressed screw parts located around the fracture line. Interestingly, there was no significant difference between the two groups in the degradation rate of the non-stressed screw parts. Consistently, the Mg screw post-optimization exhibited a significantly lower degradation rate than that pre-optimization in the back subcutaneous implantation model, which generated stress in the whole screw body. The alteration in geometric design did not affect the corrosion rate of the Mg screws in an immersion test without load applied. Importantly, an accelerated new bone formation with less fibrous encapsulation around the screws was observed in the Mg group post-optimization relative to the Mg group pre-optimization and the poly (lactic acid) group. Geometry optimization may be a promising strategy to reduce stress-induced corrosion in Mg-based orthopedic devices. STATEMENT OF SIGNIFICANCE: Stress concentrations influence corrosion characteristics of magnesium (Mg)-based implants. The geometric design parameters, including thread type, thread pitch, and thread width of the Mg screws, were optimized through finite element analysis to reduce stress concentrations in a fractured model. The Mg screws with triangular thread type, 2.25 mm pitch, and 0.3 mm thread width, exhibiting the lowest maximum von Mises stress, showed a significant decrease in the volume loss relative to the Mg screws pre-optimization. Compared with the Mg screw pre-optimization and the poly(lactic acid) screw, the Mg screw post-optimization favored new bone formation while inhibiting fibrous encapsulation. Collectively, optimization in the geometric design is a promising approach to reduce stress-induced corrosion in Mg-based implants.


Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Animais , Coelhos , Magnésio/farmacologia , Corrosão , Parafusos Ósseos , Fraturas do Fêmur/cirurgia , Análise de Elementos Finitos , Fenômenos Biomecânicos
4.
Microbiol Spectr ; 12(4): e0227823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440972

RESUMO

Candida auris is frequently associated with biofilm-related invasive infections. The resistant profile of these biofilms necessitates innovative therapeutic options, where quorum sensing may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with antifungal effects at supraphysiological concentrations. Here, we performed genome-wide transcript profiling with C. auris biofilms following farnesol or tyrosol exposure using transcriptome sequencing (RNA-Seq). Since transition metals play a central role in fungal virulence and biofilm formation, levels of intracellular calcium, magnesium, and iron were determined following farnesol or tyrosol treatment using inductively coupled plasma optical emission spectrometry. Farnesol caused an 89.9% and 73.8% significant reduction in the calcium and magnesium content, respectively, whereas tyrosol resulted in 82.6%, 76.6%, and 81.2% decrease in the calcium, magnesium, and iron content, respectively, compared to the control. Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy were primarily affected in treated cells. To prove ergosterol quorum-sensing molecule interactions, microdilution-based susceptibility testing was performed, where the complexation of farnesol, but not tyrosol, with ergosterol was impeded in the presence of exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the quorum-sensing molecules. This study revealed several farnesol- and tyrosol-specific responses, which will contribute to the development of alternative therapies against C. auris biofilms. IMPORTANCE: Candida auris is a multidrug-resistant fungal pathogen, which is frequently associated with biofilm-related infections. Candida-derived quorum-sensing molecules (farnesol and tyrosol) play a pivotal role in the regulation of fungal morphogenesis and biofilm development. Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological concentrations. Innovative therapeutic approaches interfering with quorum sensing may be a promising future strategy against C. auris biofilms; however, limited data are currently available concerning farnesol-induced and tyrosol-related molecular effects in C. auris. Here, we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy, which were primarily influenced following farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also significantly affected. These results reveal those molecular and physiological events, which may support the development of novel therapeutic approaches against C. auris biofilms.


Assuntos
Candida auris , Farneseno Álcool , Álcool Feniletílico/análogos & derivados , Farneseno Álcool/farmacologia , Farneseno Álcool/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Magnésio/metabolismo , Magnésio/farmacologia , Biofilmes , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/metabolismo , Ergosterol , Ferro/metabolismo , Ácidos Graxos/metabolismo , Candida albicans , Testes de Sensibilidade Microbiana
5.
Int J Biol Macromol ; 264(Pt 1): 130524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442832

RESUMO

Silk fibroin coatings on biomedical magnesium alloys have garnered significant attention due to their enhanced corrosion resistance and biocompatibility. However, the utilization of wild A. pernyi silk fibroin, known for its RGD sequence that facilitates tissue regeneration, presents a challenge for corrosion-resistant coatings on magnesium alloys due to its weak adhesion and high dissolution rate. In this study, we employed hexafluoroisopropanol as a solvent to blend A. pernyi silk fibroin with B. mori silk fibroin. The resulting blended fibroin coating at a 3:7 mass ratio exhibited a heterogeneous nucleation effect, enhancing ß-sheet content (32.3 %) and crystallinity (28.6 %). This improved ß-sheet promoted the "labyrinth effect" with an Icorr of 2.15 × 10-6 A cm-2, resulting in significantly improved corrosion resistance, which is two orders of magnitude lower than that of pure magnesium alloy. Meanwhile, the increased content of exposed serine in zigzag ß-sheet contributes to a higher adhesion strength. Cell cytotoxicity evaluation confirmed the enhanced cell adhesion and bioactivity. This work provides a facile approach for wild A. pernyi silk fibroin coatings on magnesium alloys with enhanced corrosion resistance, adhesion and biocompatibility.


Assuntos
Fibroínas , Oligoelementos , Fibroínas/farmacologia , Magnésio/farmacologia , Corrosão , Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
6.
Dent Mater ; 40(3): 557-562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326212

RESUMO

OBJECTIVES: This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS: Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS: Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE: Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.


Assuntos
Ligas , Magnésio , Magnésio/farmacologia , Ligas/farmacologia , Antibacterianos/farmacologia
7.
JCO Oncol Pract ; 20(4): 517-524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301188

RESUMO

PURPOSE: Hypomagnesemia is a common side effect of platinum-based chemotherapy and predicts poor overall survival in some cancers. Standard magnesium replacement strategies are often inadequate for maintaining magnesium levels. We hypothesized that a daily dietary magnesium replacement approach through magnesium-rich foods would help maintain adequate magnesium levels during platinum-based treatment. MATERIALS AND METHODS: We conducted a prospective feasibility study of magnesium-rich diets in patients 18 years and older with previously untreated ovarian cancer scheduled to receive carboplatin-containing chemotherapy of at least six consecutive cycles. Education about magnesium-rich diets was provided at enrollment and then weekly during chemotherapy. Feasibility was defined as ≥60% completion of dietary recalls and ≥280 mg average daily dietary magnesium intake across all patients. RESULTS: Twenty-one of 26 patients enrolled completed at least five chemotherapy cycles and were included in the analysis. Adherence to the study diet was 76%. Daily dietary magnesium intake was 100.5 mg at baseline and increased throughout each cycle: 6% of patients at baseline, 24% after the first cycle, and 67% after the fifth cycle reached ≥280-mg/day magnesium intake. Seven (33%) of 21 had at least one incident of hypomagnesemia. Patients who were adherent had significantly lower incidence of hypomagnesemia (19% v 80%, P = .03) and less need for intravenous magnesium (6% v 60%, P = .03) than those who were nonadherent. CONCLUSION: The study achieved primary feasibility objectives of retention and adherence to the study intervention. Weekly education about magnesium-rich diets was effective in increasing dietary magnesium intake. Adequate dietary magnesium appeared to be protective against hypomagnesemia.


Assuntos
Magnésio , Neoplasias Ovarianas , Humanos , Feminino , Carboplatina/efeitos adversos , Magnésio/farmacologia , Magnésio/uso terapêutico , Estudos Prospectivos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/induzido quimicamente
8.
Colloids Surf B Biointerfaces ; 236: 113808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422669

RESUMO

In the cardiovascular field, coating containing copper used to catalyze NO (nitric oxide) production on non-degradable metal surfaces have shown unparalleled expected performance, but there are few studies on biodegradable metal surfaces. Magnesium-based biodegradable metals have been applied in cardiovascular field in large-scale because of their excellent properties. In this study, the coating of copper loaded in silk fibroin is fabricated on biodegradable ZE21B alloy. Importantly, the different content of copper is set to investigate the effects of on the degradation performance and cell behavior of magnesium alloy. Through electrochemical and immersion experiments, it is found that high content of copper will accelerate the corrosion of magnesium alloy. The reason is the spontaneous micro-batteries between copper and magnesium with the different standard electrode potentials, that is, the galvanic corrosion accelerates the corrosion of magnesium alloy. Moreover, the coating formed through silk fibroin by the right amount copper not only have a protective effect on the ZE21B alloy substrate, but also promotes the adhesion and proliferation of endothelial cells in blood vessel micro-environment. The production of NO catalyzed by copper ions makes this trend more significant, and inhibits the excessive proliferation of smooth muscle cells. These findings can provide guidance for the amount of copper in the coating on the surface of biodegradable magnesium alloy used for cardiovascular stent purpose.


Assuntos
Fibroínas , Fibroínas/farmacologia , Fibroínas/química , Cobre/farmacologia , Ligas/farmacologia , Ligas/química , Magnésio/farmacologia , Magnésio/química , Células Endoteliais , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Corrosão
9.
Int Immunopharmacol ; 130: 111688, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394886

RESUMO

Magnesium hydride (MgH2) is a hydrogen storage material that is known for its high capacity and safety and is capable of releasing hydrogen in a controlled manner when administered orally. This release of hydrogen has been associated with a range of biological effects, including anti-inflammatory properties, antioxidant activity, and protection of the intestinal barrier. Previous research has shown that neutrophil extracellular traps (NETs) play a role in the dysfunction of the intestinal barrier in conditions such as sepsis and critical illnesses. However, it remains unclear as to whether MgH2 can protect the intestinal barrier by inhibiting NET formation, and the underlying mechanisms have yet to be elucidated. A rat model of hemorrhagic shock was created, and pretreatment or posttreatment procedures with MgH2 were performed. After 24 h, samples from the small intestine and blood were collected for analysis. In vitro, human neutrophils were incubated with either phorbol-12-myristate-13-acetate (PMA) or MgH2. Reactive oxygen species generation and the expression of key proteins were assessed. The results demonstrated that MgH2 administration led to a decrease in inflammatory cytokines in the serum and mitigated distant organ dysfunction in rats with HS. Furthermore, MgH2 treatment reversed histopathological damage in the intestines, improved intestinal permeability, and enhanced the expression of tight junction proteins (TJPs) during HS. Additionally, MgH2 treatment was found to suppress NET formation in the intestines. In vitro pretreatment with MgH2 alleviated intestinal monolayer barrier disruption that was induced by NETs. Mechanistically, MgH2 pretreatment reduced ROS production and NET formation, inhibited the activation of ERK and p38, and suppressed the expression of the PAD4 protein. These findings indicated that MgH2 may inhibit NET formation in a ROS/MAPK/PAD4-dependent manner, which reduces NET-related intestinal barrier damage, thus offering a novel protective role in preventing intestinal barrier dysfunction during HS.


Assuntos
Armadilhas Extracelulares , Enteropatias , Choque Hemorrágico , Humanos , Ratos , Animais , Choque Hemorrágico/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Magnésio/uso terapêutico , Magnésio/metabolismo , Magnésio/farmacologia , Neutrófilos , Enteropatias/metabolismo , Hidrogênio/farmacologia
10.
ACS Biomater Sci Eng ; 10(3): 1435-1447, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38330203

RESUMO

Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.


Assuntos
Magnésio , Tantálio , Porosidade , Magnésio/farmacologia , Titânio , Fosfatos de Cálcio/farmacologia , Lasers
11.
Anticancer Res ; 44(3): 1087-1095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423661

RESUMO

BACKGROUND/AIM: Methyl jasmonate (MeJa) is a botanical stress hormone that serves as a defense mechanism to inhibit growth in stressed plants. It is well known that MeJa exhibits an anticancer effect by reducing intracellular ATP, activating reactive oxygen species (ROS) production, and promoting mitogen-activated protein kinase (MAPK) activity. Presently, no report has been published on MeJa-induced changes in intracellular Mg2+ concentration ([Mg2+]i), and TRPM7 as an Mg2+ transporter in cancer cells. Therefore, this study aimed to investigate the Mg2+ homeostatic changes and apoptotic effects following MeJa treatment using the MCF-7 human breast cancer cell line. MATERIALS AND METHODS: The MTT assay was used to assess the cell viability and half-inhibitory concentration, microscopic two-photon excitation wavelength spectrophotometry was used to measure the [Mg2+]i, a luminescent assay determined intracellular ATP levels, western blot assay measured TRPM7 levels, antioxidant capacities, endoplasmic reticulum (ER) stress, and MAPK signaling pathways, while the fluorescence assay evaluated ROS concentrations and the cell apoptotic index. RESULTS: This study provides evidence that MeJa has an antiapoptotic effect on MCF-7 cells. The increase in [Mg2+]i led to decreased TRPM7 expression, which is related to elevated ROS production, in addition to elevated ER stress and MAPK signaling pathway activity and decreased ATP content. CONCLUSION: The increase in [Mg2+]i leads to decreased TRPM7 expression and may be the epicenter of MeJa-induced apoptotic cell death in MCF-7 cells.


Assuntos
Acetatos , Neoplasias da Mama , Ciclopentanos , Oxilipinas , Canais de Cátion TRPM , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Canais de Cátion TRPM/metabolismo , Neoplasias da Mama/tratamento farmacológico , Apoptose , Trifosfato de Adenosina , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/metabolismo
12.
ACS Appl Mater Interfaces ; 16(8): 9880-9889, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359078

RESUMO

Injectable hydrogels with osteogenic and angiogenetic properties are of interest in bone tissue engineering. Since the bioactivity of ions is concentration-dependent, nanosized silk-magnesium (Mg) complexes were previously developed and assembled into hydrogels with angiogenic capabilities but failed to control both osteogenic and angiogenetic activities effectively. Here, nanosized silk particles with different sizes were obtained by using ultrasonic treatment to control silk-Mg coordination and particle formation, resulting in silk-Mg hydrogels with different types of bioactivity. Fourier transform infrared and X-ray diffraction results revealed that different coordination intensities were present in the different complexes as a basis for the differences in activities. Slow Mg ion release was controlled by these nanosized silk-Mg complexes through degradation. With the same amount of Mg ions, the different silk-Mg complexes exhibited different angiogenic and osteogenic capacities. Complexes with both angiogenic and osteogenic capacities were developed by optimizing the sizes of the silk particles, resulting in faster and improved quality of bone formed in vivo than complexes with the same composition of silk and Mg but only angiogenic or osteogenic capacities. The biological selectivity of silk-Mg complexes should facilitate applications in tissue regeneration.


Assuntos
Fibroínas , Seda , Magnésio/farmacologia , Osteogênese , Hidrogéis/farmacologia , Íons
13.
J Mater Chem B ; 12(8): 2015-2027, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38304935

RESUMO

Insufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. In vitro degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate. The drug release profile demonstrated a controllable and sustained TCS release for at least two weeks in vitro. The antibacterial rates of the implant were all over 99.8% for S. aureus, S. epidermidis, and E. coli, demonstrating superior antibacterial effects. Additionally, this coated JDBM implant exhibited no cytotoxicity but improved cell adhesion and proliferation, indicating excellent cytocompatibility. In vivo assays were conducted by implant-related femur osteomyelitis and osseointegration models in rats. Few bacteria were attached to the implant surface and the surrounding bone tissue. Furthermore, the coated JDBM implant exhibited more new bone formation than other groups due to the synergistic biological effects of released TCS and Mg2+, revealing excellent osteogenic ability. In summary, the JDBM implant with the sandwiched composite coating could significantly enhance the antibacterial activities and osteogenic properties simultaneously by the controllable release of TCS and Mg2+, presenting great potential for clinical transformation.


Assuntos
Magnésio , Osteogênese , Ratos , Animais , Magnésio/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
14.
Acta Biomater ; 178: 307-319, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382831

RESUMO

Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1ß, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1ß (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.


Assuntos
Lítio , Magnésio , Humanos , Animais , Camundongos , Lítio/farmacologia , Magnésio/farmacologia , Interleucina-6 , Implantes Absorvíveis , Neuroglia , Ligas/farmacologia , Inflamação , Corrosão , Teste de Materiais
15.
Dent Mater ; 40(3): 508-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199893

RESUMO

OBJECTIVES: Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or ß-tricalcium phosphate (ß-TCP) granules. However, HA is degraded very slowly in vivo and for ß-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS: Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and ß-TCP. RESULTS: All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and ß-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE: We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to ß-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.


Assuntos
Substitutos Ósseos , Compostos de Magnésio , Magnésio , Fosfatos , Ovinos , Animais , Estruvita , Magnésio/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Substitutos Ósseos/farmacologia , Durapatita , Regeneração Óssea
16.
Plant Physiol Biochem ; 207: 108383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286092

RESUMO

Underground vegetables are sensitive and vulnerable to salt stress. The vegetables are the main source of vitamins, nutrients and minerals in human diet. Also contain healthy carbohydrates, antioxidant and resistant starch which are beneficial for human health. Salinity influences water balance, morphological appearance and cellular interference of crop plants. It also caused disproportion of nutrients which usually affects the physiochemical processes in plant. Salt stress also affect biochemical attributes and hampers the growth of underground organs, due to which yield of crop decreased. The nanoparticles had been potentially used for better crop yield, in the recent. In our research study, we elaborate the positive response of magnesium oxide nanoparticles (MgO-NPs) on the morphological and biochemical parameters as well as anti-oxidant enzymes action on two accessions of carrot (Daucus carota L.) under salt stress of 40 mM and 80 mM. In a pilot experiment, various levels (0, 50, 100, 150, 200 and 250 mg/L) of MgO-NPs were tested through foliar application on carrot plants. Foliar application of MgO-NPs at concentration of 150 mg/L was most effective treatment and ameliorate the salt stress in both carrot accessions (DC-03 and DC-90). The MgO-NPs significantly enhanced the morphological and biochemical parameters. The yield was significantly increased with the exposure of MgO-NPs. Our results thus confirmed the potential of MgO-NPs to endorse the plant development and growth under salinity. However, further research study is needed to explore effectiveness of MgO-NPs in various other plants for the ameliorant of salinity.


Assuntos
Daucus carota , Nanopartículas , Humanos , Magnésio/farmacologia , Óxido de Magnésio/farmacologia , Antioxidantes/farmacologia , Estresse Salino
17.
Carbohydr Polym ; 327: 121666, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171658

RESUMO

Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.


Assuntos
Dextranos , Magnésio , Magnésio/farmacologia , Dextranos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese , Durapatita/farmacologia , Apoptose , Tecidos Suporte
18.
Int J Oral Sci ; 16(1): 10, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296940

RESUMO

Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.


Assuntos
Diabetes Mellitus Experimental , Magnésio , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Magnésio/farmacologia , Magnésio/metabolismo , Osseointegração , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
19.
Int J Biol Macromol ; 259(Pt 2): 129283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199538

RESUMO

Diabetic wounds, resulting from skin atrophy due to localized ischemia and hypoxia in diabetic patients, lead to chronic pathological inflammation and delayed healing. Using electrospinning technology, we developed magnesium ion-chelated nanofiber membranes to explore their efficacy in antibacterial, anti-inflammatory, and angiogenic applications for wound healing. These membranes are flexible and elastic, resembling native skin tissue, and possess good hydrophilicity for comfortable wound bed contact. The mechanical properties of nanofiber membranes are enhanced by the chelation of magnesium ions (Mg2+), which also facilitates a long-term slow release of Mg2+. The cytocompatibility of the nanofibrous membranes is influenced by their Mg2+ content: lower levels encourage the proliferation of fibroblasts, endothelial cells, and macrophages, while higher levels are inhibitory. In a diabetic rat model, magnesium ion-chelated nanofibrous membranes effectively reduced early wound inflammation and notably accelerated wound healing. This study highlights the potential of magnesium ion-chelated nanofiber membranes in treating diabetic wounds.


Assuntos
Diabetes Mellitus , Nanofibras , Humanos , Ratos , Animais , Magnésio/farmacologia , Células Endoteliais/patologia , Cicatrização , Diabetes Mellitus/patologia , Inflamação
20.
ACS Appl Mater Interfaces ; 16(5): 5648-5665, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38267388

RESUMO

Recently, zinc (Zn) and its alloys have demonstrated great potential as guided bone regeneration (GBR) membranes to treat the problems of insufficient alveolar bone volume and long-term osseointegration instability during dental implantology. However, bone regeneration is a complex process consisting of osteogenesis, angiogenesis, and antibacterial function. For now, the in vivo osteogenic performance and antibacterial activity of pure Zn are inadequate, and thus fabricating a platform to endow Zn membranes with multifunctions may be essential to address these issues. In this study, various bimetallic magnesium/copper metal-organic framework (Mg/Cu-MOF) coatings were fabricated and immobilized on pure Zn. The results indicated that the degradation rate and water stability of Mg/Cu-MOF coatings could be regulated by controlling the feeding ratio of Cu2+. As the coating and Zn substrate degraded, an alkaline microenvironment enriched with Zn2+, Mg2+, and Cu2+ was generated. It significantly improved calcium phosphate deposition, differentiation of osteoblasts, and vascularization of endothelial cells in the extracts. Among them, Mg/Cu1 showed the best comprehensive performance. The superior antibacterial activity of Mg/Cu1 was demonstrated in vitro and in vivo, which indicated significantly enhanced bacteriostatic activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli as compared to that of the bare sample. Bimetallic Mg/Cu-MOF coating could properly coordinate the multifunction on a Zn membrane and could be a promising platform for promoting its bone regeneration, which could pave the way for Zn-based materials to be used as barrier membranes in oral clinical trials.


Assuntos
Estruturas Metalorgânicas , Osteogênese , Cobre/farmacologia , Cobre/química , Magnésio/farmacologia , Estruturas Metalorgânicas/farmacologia , Zinco/farmacologia , Zinco/química , Células Endoteliais , 60489 , Antibacterianos/farmacologia , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...